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ABSTRACT

A set of linearized equations of motion to predict the

linearized dynamic response of a single rotor helicopter in a

hover trim condition to cyclic pitch control inputs is described.

The equations of motion assume four fuselage degrees of freedom;

lateral and longitudinal translation, roll angle, pitch angle,

four rotor degrees of freedom_ flapping (lateral and longitudinal

tilt of the tip path plane), lagging (lateral and longitudinal

displacement of the rotor plane center of mass) and dynamic

inflow (harmonic components). These ten degrees of freedom

correspond to a system with eighteen dynamic states. In addition

to examination of the full system dynamics, the computer code

supplied with this report permits the examination of various

reduced order models. The code is presented in a specific form

such that the dynamic response of a helicopter in flight can be

investigated. As described in the report, with minor

modifications to the code the dynamics of a rotor mounted on a

flexible support can also be studied.



INTRODUCTION

The equations of motion for the linearized small

perturbation motion of a single rotor helicopter about a hovering

trim condition were formulated using a Lagrangian approach. For

a linearized investigation of the hovering flight dynamics it can

be assumed that the fuselage center of mass remains in an

horizontal plane during the disturbed motion if collective inputs

are not of interest. Vertical translation will be uncoupled from

horizontal translation and fuselage roll and pitch. Thus the

collective pitch is assumed constant at its trim value. Also as

a consequence of this assumption, the coning angle and the

average value of the induced velocity are also assumed to be

constant in the code. The influence of the tail rotor is

neglected and the yaw angle is assumed to be constant at its trim

value, as coupling of the degree of freedom will be relatively

weak near hover. Also the steady value of the lag angle is

assumed constant at its trim value. The documentation of a

larger code for hover and translational flight trim conditions

which includes the vertical and yaw degrees of freedom as well as

the tail rotor effects is nearly complete and will be available

in the near future.

The fuselage center of mass is assumed to lie on the rotor

shaft and no fuselage aerodynamics are included. Thus the hover

trim condition corresponds to zero values of longitudinal and

lateral cyclic pitch. Only the specific formulation for a

helicopter in flight is considered in this discussion. See the
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Discussion section for a description of modifications to the code

to examine other problems such as ground resonance.

The rotor dynamics are included in the code through the use

of multiblade coordinates. The longitudinal and lateral tilt of

the rotor plane relative to the shaft are described by the

coordinates als, bls. The lag motion is described by Y1 and Y2

corresponding to lateral and longitudinal displacement of the

rotor center of mass. These are the first four state variable in

the computer program. Four body coordinates are fuselage pitch

(OF), fuselage roll (_F), lateral translation (yF) and

longitudinal translation (XF). Note that longitudinal

translation is positive to the rear. This particular choice of

coordinate depends on the selection of the elements in the T

matrix as described below.

describe the dynamic inflow.

the full system are

Two state variables v and v
C S

Thus the displacement variables for

{als' bls' YI' Y2' 8F' _F' YF' XF' Vc' Vs}

The dynamic inflow variables are first order while the other

variables are second order so that there are a total of eighteen

state variables. The system equations are ordered such that the

rotor and body displacement coordinates are followed by the rotor

and body velocities and then the dynamic inflow components. Thus

for the full system the state variables appear in the following

order in the computer code output_
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v

}T b , y
{×i = {als' is i'

8F' _F' YF' x

Y2' gF' _F' YF' XF' als'

T
F' Vc' vs)

The control variables are,

T
{Ui} = {Als, Bls}

bl ' Y1 Y2S ' '

v
For the reduced order system option without dynamic inflow,

the last two state variables (v ,v ) are dropped and there are
c s

sixteen state variables.

For the quasi static option, both the rotor blade motion and

the dynamic inflow become algebraic variables and are eliminated

from the equations of motion to yield eight state variables,

describing the fuselage motion

T
{Xqs} = {8F' _F' YF' XF' 8F' _F' YF' XF}

The quasi-static case has two options, with and without dynamic

inflow.

Note that since there is no dependence in the equations of

motion on fuselage displacement (YF' xF) so in all of these cases

there will be two zero eigenvalues.

While the quasi-static model is useful for developing

physical insight, it has been shown in Reference 1 by comparison

of this theory with flight test that the rotor-body coupling and

dynamic inflow are significant in predicting the actual response

of a helicopter to cyclic pitch.

The equation of motion are formulated for an articulated

rotor helicopter with equal flap and lag hinge offset. Ringeless
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rotor helicopter dynamics can be approximated by the addition of

springs about the flap and lag hinges. These spring constants

appear in the input file.

The rotor blade element aerodynamics are assumed linear,

i.e., the blade element lift coefficient is assumed to be a

linear function of blade element angle of attack and the blade

profile drag coefficient is assume constant. With these

assumptions the blade aerodynamic forces can be integrated along

the blade span to the flapping hinge and multiblade coordinates

introduced to describe the rotor motion. The dynamic inflow

model used in the computer code is described in Appendix I and is

due to Peters. Rotor angular velocity is assumed constant.
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NOMENCLATURE

Rotor Geometry

eB = e° -Als sine - Bls come + AO H + AO E

= rotor blade azimuth angle measured from longitudinal axis

(x F)

e = collective pitch assumed constant, calculated in codeo
(TNOT), rad.

Als,Bls = lateral and longitudinal cyclic pitch, control input

terms corresponding to lateral and longitudinal stick

deflection, radians

Ae H = blade pitch change due to hinge coupling

A8 H = d* A8 + e* A_

d* corresponds to a 6 3 hinge

¢* corresponds to _2 hinge

A8 E = blade pitch change due to elastic deformation of swash

plate

A8 E = ae c cos¢+ A8 s sine

AOc = (A - i) 8x H + Bay H + Cx H + Dy H

AOs = EOXH + (F - I) Oy H + Gx H + Hy H

For rigid shaft A = i, F = i, B=C=D=E=G=H=O

8 = a ° - als cos_ - bls sine, flap angle, positive up. rad

a
o

= coning angle assumed constant, calculated in code (BETA),

rad



L _
V

als , bls = multiblade flapping coordinates (state variables) als

longitudinal tilt, positive for flap beck, red

bls lateral tilt, positive for tilt down on right

side, rad

= _o - Y1 cos@ - Y2 sin@, lag angle, positive for lag opposite

to rotation, red

fo = steady lag angle assumed constant, calculated in code

(RNOT), rad. This quantity does not appear elsewhere in

the code due to the use of multiblade coordinates

y1,Y2 = multiblade lag coordinates Y1 corresponds to lateral

displacement of the rotor center of mass, positive to the

right, and Y2 correspond to longitudinal displacement,

positive forward, red

Inflow

v = v + v x cos@ + v x sin@, positive downard, fps
O c s

v = average induced velocity, assumed constant, calculated in
o

code (VNNT), fps

Vc, v s = harmonic components, tip amplitude, calculated as

described in Appendix I

Fuselage

h = distance between fuselage CG and hub, ft

Hub Motion

x H = longitudinal displacement of hub, positive aft, ft

YH = lateral displacement of hub, positive to the right, ft

By H = pitch angle, positive nose up, rad

8
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v

8x H = roll angle, positive left side down, rad

Generalized Coordinates

XH = Z txi qi

YH = Z tYi qi

Oy H = Z toy i qi

8XH = Y tSx. qi
i

tx i, tY i, tSy i' tSx.
1

= elements of T matrix relating choice of

generalized coordinates (qi) to hub

motion. These are selected in the code as

ql = 8F ' fuselage pitch angle, positive nose up, rad

q2 = _F '

q3 = YF '

fuselage roll angle, positive right side down, tad

fuselage center of mass lateral displacement,

positive to the right, ft.

q4 = XF ' fuselage center of mass longitudinal displacement,

positive to the rear, ft

T = {tx i, tYi, tSx.,
1

t ), transformation matrix
8Y i

W _-

h 0 0 1"

0 h 1 0

0 -1 0 0

1 0 0 0

Note that the sign of the roll angle coordinate has been reversed

in the transformation matrix.

9
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DISCUSSION

v

In order to investigate various coupled rotor-body problems

such as: i) The dynamics of a helicopter disturbed from hovering

flight; 2) The dynamics of a helicopter resting on the ground

(ground resonance); 3) The dynamics of a rotor on a flexible

mount, the effect of hub motion is treated in the following way.

Hub motion is assumed to be horizontal displacement in two

directions (x,y), and rotation in pitch and roll (Oy, Ox),

T

{XH} = {x, y, By, 8 x}

Generalized coordinates (qi) are used to describe the support

motion and are related to the hub motion by a transformation

matrix T:

{XH} = [T] {qi }

The matrix T can be selected to represent a variety of supports.

The equations of motion are of the general form:

Rotor Equations:

ARR{XR} + ARH{XH} = 0

Support Equations:

ASRR{XR} + ASHR{XH} + ASHs{x H} = 0

The A's are second order operators with the following

interpretation

ARR = rotor forces and moments due to rotor motion

ARH = rotor forces and moments due to hub motion

i0



v

ASR R =

ASH R =

support forces and moments from rotor due to rotor

motion

support forces and moments from support due to hub

motion

support forces and moments from rotor due to hub

motion

Now to express the equations of motion in terms of support motion

{qi} the transformation

{X H} : [T] {qi}

is introduced and the equations of motion expressed as:

ARR{XR} + (ARHT){qi } = 0

ASRR{x R } + (ASHS T + AsHRT) {qi } = 0

This is the general form of the coupled rotor-support equations

of motion. Thus, the equations of motion of a rotor on a rigid

support with no hub motion (qi = 0) are:

_RR{xR} : 0

and the equations of motion of the support without the rotor are

AsHsT {qi ) = 0

It is assumed in the equations of motion given below that the

matrix of operators (AsHsT) describing the support

system motion is diagonal and is of the form:

S2 + C S + K. ]AsHsT = [Mii ii li

Thus the qi's are generalized coordinates describing the support

degrees of freedom. Care must be taken in the selection of the

support motion coordinates, such that the matrix (AsHsT) is

II



diagonal.

of support equations of motion.

The factor I/2 appears due to the normalization of

1 _ 2
ii - bi B (Mii)

The system matrices are of the general form,

MRH

etc,

(MsH S + MSH R)

[M] 1 = [ MRR

[MSRR
1

Potential Energy and Virtual Work Due to Thrust

The potential energy terms and the virtual work due to the

rotor thrust must be treated carefully since second order terms

are involved which are sensitive to the assumptions made

regarding support motion. The rotor terms are calculated based

on the assumption that the hub motion takes place in horizontal

plane. The linearized equations of motion assuming either

horizontal motion of the fuselage support or horizontal motion of

the hub, are the same as shown below. The potential energy and

virtual work due to thrust must be treated carefully. These

terms will be different in the two cases but their sum will be

the same. It is necessary to include in the evaluation of these

terms the effect of a vertical displacement (z). It is desirable

to consider the formulation with the fuselage or support center

of mass translational displacement in a horizontal plane. This

will also be a suitable approximation if the rotor is on a

flexible mount.

12



Rigid Fuselage/Shaft - Rotorcraft in Flight

First consider the case in which the equations of motion are

used to examine the dynamics of a helicopter in flight where the

shaft is assumed to be rigid. Both vertical motion of the hub

and fuselage are permitted at this point. The potential energy

of the system is (Fig. I):

V = MFg z F + bMBg z H

and the virtual work due to the thrust is:

6W T = T cosO x sinOy 6x H - T sinOx6YH

+ T cos8 x cOS8y 6z H

(1)

(2)

The thrust, T, is assumed constant since the trim condition is

hovering flight, however since it has a non-zero value in trim

the virtual work due to the second order displacement 6z H must be

included since it will produce a first order term in the virtual

work.

The relationship between the fuselage displacements and the

+ h' cos8 sin8
x y

h' sin8 (3)
x

+ h' cos8 cos8
x y

hub displacements are:

x H = x F

YH = YF

z H = z F

h' is the height of the rotor center of mass above the fuselage

center of mass.

S B

h' : (h + MBB B°)

It can be shown that the linearized equations of motion that

13
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V

result from assuming either hub motion constrained to a

horizontal plane (z H = O) or fuselage motion constrained to a

horizontal plane (z F = O) will be the same if the potential

energy and virtual work terms are evaluated consistent with

either of these approximations. The vertical velocity of the hub

(_H) does not appear in the rotor kinetic energy terms due to the

hub motion assumption used in deriving the rotor terms in the

equations of motion. Using the alternate assumption that the

fuselage center of mass motion is constrained to the horizontal

plane (z F = 0), there is no linearized contribution to the

kinetic energy from ZH which arises only due to rotation of the

shaft. Therefore, it is only in the potential energy and virtual

work terms which arise due to the thrust vector that the effect

of this different assumption must be considered. The effect of

rotation on vertical displacement must he included in the

evaluation of these terms.

Horizontal Fuselage Motion

First consider the evaluation of the potential energy and

virtual work based on the assumption that the fuselage center of

mass remains in a horizontal plane (z F = 0). In this case,

potential energy terms will arise due to the vertical

displacement of the rotor mass.

Equation (I) becomes,

V = bMBg z H = bM B gh'cos8 cos8× y

%._J
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8V

8q i

8O
X

(-bMBgh')(sinO cosO
x y 8qi

8O

sinO aq--_i)+ cose x y

8o

E - bMBgh, (O x + O
x 8q i y

8O

These potential energy terms are considered apparent spring terms

in the computer code since they depend upon the support model

assumption. They are entered directly in the input file as K..
II

terms. They take the following form,

8V = - bMBgh'((Z toxiq i) tO× i + (Z toyiq i) toy i)
8q i

For the coordinate selection given below,

8V 8V
- = - bMBgh' O F (4)

8q I 88 F

8V = 8V = _ bMBg h, _F
8q 2 8@ F

V

v

The virtual work terms due to rotor thrust simplify for this

assumption of (z F = O) by noting that since the rotor thrust lies

along the shaft, angular motion of the shaft does not contribute

to the virtual work. Using Equations (3), with z F = O, equation

(2) becomes,

6W T = T cosO x sinOy 6x F - T sinO x 6y F

= 6x F + 0 6y FOXF YF

Consequently the linearized terms are

15



x F equation

Q = T 8
x F Y

= T 7- t
8yi qi

YF equation

Oy F -T O x T 7. tSx i qi

These terms are entered directly in the spring matrix [K] 1 for

for the specific form of the T matrix given below, i.e.,

t = l
Oyl

(5)

t = -1
Ox2

In the computer code these are terms RKI(8,5) and RKI(7,6).

The transformation matrix is selected in this case to

identify the q.
1

as follows:

ql

where

° F

_F

YF

x F

{SF' CF' YF' xF}T

fuselage pitch, positive nose up

fuselage roll, positive right side down

fuselage lateral translation, positive to the

right

fuselage longitudinal translation, positive to the

rear

and the matrix T is

16



Tij = [t×i ]

h

0

0

1.0

W

t t t
yi 8xi 8yi

0 0 1.0

h -I.0 0

1.0 0 0

0 0 0

v

V

Note that the sign convention for the roll angle has been

reversed (t2, 3 = - 1.0).

With this selection of coordinates the support terms are of

t he form

DI

(Mii qi + Kii qi )

specifically

ql (°F)

(Iy "SF - KB 8F)

q2 (_F)

(I x _F - KB 8F)

q3 (YF)

(M F YF )

q4 (XF)

where K B is obtained from the potential energy terms (equations

(4)) above.

K B = -bM B gh'

17
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The spring constant K B is negative, representing the fact that

the rotor mass is above the fuselage mass.

Horizontal Hub Motion

It wi]] now be shown that if the alternate assumption

(z H = 0) is employed the same terms will result. In this case

equations (I) and (2) become:

V = MFg z F

6W T = T cos8 sin8 6x H - T sin8 6y Hx y x

and from Eq. (3)

6z = + h' sin8
F x

cosO 60 + h' cosO sinO 68
y × × Y Y

= - sin8
6x H 6x F h' sinO x Y

6y H = 6y F - h' cosO x 6e x

Assuming smal] angles and combining

6V -
8W T = (MFg- T) h' 8x 68 x

+ (MFg- T) h' 8y 68y

+ T 8y 6x F - T 8x 6y F

From vertical equilibrium

T = MFg + b MBg

68 + h' cos8 cos8 68
x x y y

(6)

(7)

it can be seen that equations (6) and (7) give the same result

for the two terms given by equations (4) and (5). The terms are:

6V - 6W T = -bM Bgh' Ox 60 x

- bM B gh' Oy 6Oy (8)

+ T 8y 6x F - T 8x 6y F

18
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Rotor Mounted on Support - Fixed Support Point

Now consider the case in which the rotor is mounted on a

flexible transmission/shaft system. There is assumed to be no

vertical motion of the support point (z F = 0). The potential

energy is due only to the blade mass,

V = bMBg z H

The virtual work due to the thrust is given by equation (2). If

we assume that the flexibility of the mounting is described by a

number of normal modes of amplitude qi' then the hub motion is

related to the qi by the transformation matrix T. The support

equation of motion would then be of the form,

"" aV Oi } + {XR}
Mii{qi} + Cii{qi} + Kii{qi} + {_i ASRR

+ _SHR T {qi } = 0

where the effect of hub vertical motion (z H) should be included

in the evaluation of the potential energy term due to the blade

mass and the virtual work term due to the thrust. In general as

noted above it is not necessary in the linearized formulation to

include the effect of ZH in the remaining terms due to the rotor.

Mii, Cii, Kii are the generalized mass, damping and stiffness

associated with the ith mode. In general z H will be a nonlinear

function of shaft deflection, i.e., a function of the lateral

deflection of the shaft squared. Physically this means that the

zH deflection terms associated with thrust component and the

potential energy term will give rise to apparent spring terms.

19
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Rigid Shaft

Consider first the rigid shaft case as discussed above.

small deflections,

6W T = T 8y

6V = bMBh'

- 6y H + T 6z6x H T 8y R

6z H

For

(9)

For rigid rotation of the shaft with no translation of the

support motion (6x F = O, 6y F = O)

6x H = h' 68y

= , (lO)
6y H -h 60 x

6z H = -h' 8 x 68 x -h' Oy 68y

Substitution of equations (I0) into (9) shows that the virtual

work is zero. An apparent spring is produced due to the

potential energy term associated with blade mass. That is,

physically, if the shaft is rigid the thrust does not produce a

moment about the support. Thus to examine this problem the terms

corresponding to the virtual work in the computer code should be

removed (RKl(8,5), RKl(7,6)).

Flexible Shaft

Consider now a simple case in which the shaft has one

deflection mode, in longitudinal plane only. The shaft

deflection is represented by a mode shape _1" The local

deflection of the shaft is (Figure 2):

xs = gl (z) ql

The local slope is

2O
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=
v

v

V

d_ 1
0 - (z) qls dz

At the hub location, the mode shapes are represented by the T

matrix coefficients.

_l(h) = Txl

d_ 1

dz (h) = Tey 1

The z deflection of the hub is

8 1 i L dx 2
<_ (_z) dz)

6ZH - 8ql o

where

8x d_l

8z dz ql

Thus

L d_ 1 2

6z H : - (I (d-_-)
o

dz) qi 6qi

This is an apparent spring terms or an effective change in

stiffness due to the potential energy and virtual work terms.

Note that the thrust is a "follower" force so that the

apparent change in stiffness depends upon the mode shape, The

virtual work due to the thrust is (6y H = O)

6W T -- T 8y 6x H + T 6z H

Therefore,

L d_l 2

6W T _ W [Toy I Txl - I (d-_--) dz] ql 6ql
o

d_ 1 L d_l 2

T [d--_--(L) nl(L) - I (d--_--)
0

dz] ql 6ql

21



For a rigid shaft

Z

41 =

and

5W T = 0

For a flexible shaft the sign of the apparent spring depends upon

the sign of the term in brackets above. This term can be also

expressed as,

L d2_l

6W T m T [ I _I 2 dz] ql 6ql
o dz

by integrating by parts in the case _i(0) = O.

Thus the thrust will often tend to act as a negative spring

even though a tension is produced due to the fact that it is a

"follower" force (Figure 2).

These terms will be small, for a typical flexible shaft on

which a rotor is mounted. That is, the thrust and blade weight

will not have a stron_ effect on the shaft frequencies.

In the general case, with more complex shaft/transmission

modes, the T coefficients correspond to the deflection and slope

at the end of the shaft or support. If the mode characteristics

are only available numerically then an approximation must be made

to determine the z H dependence with deflection which should be of

the general form indicated above. Note also that if the shaft is

assumed rigid with a rotation about the base, the above equations

for 6z H will recover the correct result for a rigid shaft.

= _

22



The generalized stiffness and mass are:

L
2

KII = I EI(_[) dz
o

L
2

MII = I m(_ I) dz
o

%J

v

_v

23
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SUMMARY

A linearized set of equations of motion for a coupled rotor-

body system for the trim condition of hovering flight have been

described. The rotor kinetic energy terms are derived based on

the assumption the hub motion takes place in a horizontal plane.

The formulation permits the analysis of various coupled rotor-

body problems, including a rotor mounted on various supports and

free flight. Support motion can be assumed to lie in a

horizontal plane such that vertical displacement of the hub

arises only from rotation (rigid shaft) or support flexibility if

the potential energy and virtual work due to the thrust force

account for the vertical displacement of the shaft. For this

assumption, vertical displacement of the hub will be of second

order and will not contribute to the kinetic energy, but will

Kive rise to first order term in the potential energy and

virtual work due to thrust. Other virtual work terms due to

inplane forces and hub moments are not affected by this

assumption.

The terms to be evaluated for the specific support

assumption are:

and

V = MFg z F + bMBg z H

6W T = T cosO x sinOy 6x H - T sinO x 6y H

+ T cos8 x cOSSy 6z H

The equations of motion as described in detail below and

(1)

(2)

24
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currently in the computer program assume rigid shaft motion and

fuselage motion in a horizontal plane (z F = 0).

yields the relationships in equation (8)

6V = bHBgh'(-_ 0 60 - 0 60 )x x y y

6W T : TOy 6× F - TO x 6y F

This assumption

(8)

The terms due to the virtual work of the thrust are entered

directly in the matrices (RKl(8,5), RKl(7,6)) and their placement

is reflected by selection of the q.'s as noted. The potential
1

energy terms give rise to apparent spring terms that are entered

in the input file (Kll,K22). Again their placement is reflected

by the selection of the qi's.

Thus to study dynamic problems of a rotor on a support with

other selections of generalized coordinates, the potential energy

and virtual work due to the thrust must be calculated for the

specific problem and entered suitably in the computer program.

The virtual work terms are in a form corresponding to free flight

and are due to thrust. In general they should be removed from the

computer code (RKl(8,5), RKl(7,6)), for other problems.

L
V
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PROGRAM INPUT FILE AND OPTIONS

The computer program is set up to provide the equations of

motion for a hovering helicopter in four cases:

i. Full system with dynamic inflow

2. Full system without dynamic inflow

3. Quasi-static system with dynamic inflow

4. Quasi-static system without dynamic inflow

The full system includes blade flap and lag degrees of freedom,

body degrees of freedom and dynamic inflow. The dynamic inflow

model is described in Appendix I of this report and the quasi-

static formulation is given in Appendix II. For the full system

with dynamic inflow, the state variables are,

T

{x} = {a I, b I, YI' _2' ql' q2' q3' q4' re' Vs}

The selection of the T matrix yields for the q's,

ql = OF

q2 = _F

q3 = YF

q4 = XF

For the full system without dynamic inflow, v and v
C S

as state variables. For the quasi-static system,

T

{Xqs} = {ql' q2' q3' q4 }

The rotor blade motion and the dynamic inflow are not state

variables and are eliminated as explained in Appendix II. Note

however that in the quasi-static case there is the option to

include quasi-static inflow terms which will of course influence

2S

are dropped



V

v

%.,

the results.

The data input file describes the physical characteristics

of the helicopter. The sample included is for the case of a

helicopter in flight with a rigid shaft.

The first three lines of the data file are the generalized

mass, spring and damping associated with the qidegrees of

freedom. These depend upon the choice of the T matrix (the next

two lines of the data file). For the selection of the T matrix

elements in the sample data file,

ql = 8F ' MII = Iyy

q2 = _F ' M22 = Ixx

q3 = YF ' M33 = mF

q4 = XF ' M44 = mF

Note that these are inertial characteristics of the helicopter

without rotor blades. The generalized spring terms arise from

considerations discussed above and are equal to

S B

Kll = K22 = - bMBg (h + MBB B°)

The generalized damping terms are equal to zero in this case.

The next two lines are the elements in the T matrix,

• tY itx 1

tSx. tSy i1

The selection in the example is explained in the introduction.

The sixth line in the data file contains
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C_

KHL

KHB

= mechanical lag damping ft-lb/rad/sec

= equivalent lag spring ft-lb/rad

= equivalent flap spring ft-lb/rad

= rotor rpm, rad/sec

The seventh line is,

M 8

M
s

I B

= blade mass, slugs

= blade first mass moment, slug-it

2
= blade flapping moment of inertia, slug-it

(flap and lag moments of inertia assumed equal)

The eighth line is,

R = blade radius, ft

e = flap/lag hinge offset, ft

c = blade chord, ft

o = blade solidity (number of blades appears through

solidity)

a = blade lift curve slope

The ninth line is,

0 = ambient air density, slug/it 3

6 = blade average profile drag coefficient

The tenth line is,

d$ = pitch change due to flap (63 hinge)

e$ = pitch change due to lag

The eleventh and twelfth lines permit introduction of swash plate

deflections with shaft bending. In the form given there is no

28



%J swash plate deflection relative to the shaft with shaft motion.

The thirteenth line is:

T = trim thrust, lbs

= dynamic inflow parameter

WRF = wake rigidity factor

is the height of the equivalent cylinder of air to be

accelerated and WRF is the wake rigidity factor which should be

set equal to 2.0 as explained in Appendix I..

V
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APPENDIX I

DYNAMIC INFLOW

The equations of motion also permit addition of dynamic

inflow components. Since the trim condition is hovering flight

only variable harmonic components are introduced. The harmonic

components are assumed to vary linearly with radius.

Av = v x cos@ + v x sin@
c s

The equations describing the harmonic inflow component

amplitudes at the blade tip are:

4C M

_iVc + v c = _ k I [a--_--]

4CE

TI_ s + v s = - k I [a--_--]

v

The harmonic components are positive for downward flow

through the rotor. TI is the time constant associated with

response time of the inflow to changes in aerodynamic moments on

the rotor (CM, CE) and k I is the proportionality between the

aerodynamic moments and the inflow in the steady state. These

are expressed as

TI = 2_ n f
o w

aoR_

kI = 2_ f
o w

There are two variable parameters in these expressions which

are input parameters to the computer program

3O
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k.2

kJ

v

H
where H is the height of an equivalent cylinder
of air which must be accelerated. The theoretical

value is H = .453R.

f is the wake rigidity factor. The correct value of
w

this parameter is 2.0 (non-rigid wake) although in
some places in the literature it is taken as 1.0

(rigid-wake). This terminology is from Miller.
(f : (WRF)).

W

In addition the harmonic induced velocity terms will change

the aerodynamic forces on the rotor blades. Denoting v = {Vc,

T
v s }

The complete equations of motion with dynamic inflow are:

0 + -DYB2 l + -DYB1 -DYC

DF

Introducing the notation

4CMB
C* -
MB ao

* the nondimensional blade flapping moment has two parts,where CMB

one due to the rotor and body motion, denoted C $ and one due
MBo '

to the harmonic inflow. Therefore,

_C_B _
C _ = C _ + v

MB MBo 3v c
C

Note that in the equations above v is dimensional.

notation of the computer program.

yO 2 aCl_ B - yf_ ¢':':3C_B
DYE v = v = v

c 2 av c 2R av c
C C

In the
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1 + kl 1  CMH]
DYC(I,I) = - [7i T I fiR av

C

DYe(l,1) (-VNNT)(WRF)2 + PP= HH _-_ (RMFVC + EB FNVC)

* DYB2 _ + DYBI x
DYB = - PP CMB =

O

pp =
aoR_ 2 k I

"rI

where

WRF = f
W

VNNT = v
0

average induced velocity, dimensional

HH = h = h R, dimensional

and WRF are input constants in computer program

C

= - RMFVC

6CMH

av
C

[RMFVC + (EB)(FNVC)]

: =

For the quasi-static inflow assumption,

DYCv = - DYB

and v can be eliminated from the force and moment equations. The

additional terms in the force and moment equations accounting for

inflow effects are,

- (DYE)(DYC)

The term due to v
C

-1
DYB

equals,
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y_ 6C_B)

_v
C

(-PP)

k I 1 aCMH
I__+ ( )
T • QR
I I 8v

C

} CMB

V

Substituting for PP

) CMB

I k I 8CMH
-- +

T I OR 8v
C

k I

OR

ao 8C_B

9

2_ f av
0 W C

8CMH I
- ---- RMFVC _-

av 4
C

{ac }

_2 8_ f ,
o w } CM B

2 1 + {a_ }
8v f

0 w

This term can be combined with other aerodynamic terms in the

equations of motion which are of the form

yn2 ,
2 CMB

0

to yield,

_2 ,
- Y { aol } F CMB

1 +
8_, f

0 W

Thus the effect of the inflow in the quasi-static case can

be viewed as a reduction in Lock number. The effective Lock

33



number is,

YE = aO1 +
8_ f

0 W

v
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APPENDIX II

QUASI-STATIC FORMULATION

V

The quasi-static formulation is obtained by first separating

the rotor and body degrees of freedom.

x = , b Y1 Y2 }r {al i' ' T v : {v c, vs}T

Xb = {ql' q2' q3' q4 }T

The equations of motion are written as:

I Mll M12 I I Xr_., + I Cll C121 fXrt + I Kll K12 I f ×r_
M21 M22 Xb_ C21 C22 Xb K21 K22 _ Xb

+ [DYE] {v} = {u}

F 2

The equations of motion for the inflow components are:

{@} = [DYC]{v] + [DYBI]{x} + {DYB2}{_} + [DF] {u}

The quasi-static assumption is obtained by setting:

MII = M21 = CII = C21 = 0

_ = 0

solving the inflow equation,

-i
{v} : - [DYC] [DYB1]{x} - [DYC] -1 [DYB2]{_} - [DYC] -1 [DF] {u}

This is substituted into the first set of equations:

-I -I
[M] {x) + [C-DYE DYC DYB2]<_} + [K-DYE DYC DYBI] {x}

-1
= [F + DYE DYC DF] {u}
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Rewriting the equations:

or

I01101211 rII 11 1211
Xb) C21 _22 _b _[21 _[22 Xb

: {u}

_2

The quasi-static assumption is:

Solving the first equation for the rotor motion,

{x } = - [_1 1 [g {X'b} -1 _ {_b} _ [_ilr l 12 - [{11 12 1 _12 {Xb}

v

-1 _ {u}+ Rll 1

This is substituted into the second equation,

~-1 1 -
[M22 - R21Kll _12 ] {_b } + [_22 - _21 _11 C12] {Xb }

-1_ }+ [_22 - _21 _11 12 ] {Xb

1 _1 ] {u)= [P2 - _21 _ii

These are the equations of motion for the quasi-static system

8_

[OM] {x } + [_C] {_ ) + [_K] {X } : [Q_] {u)

These matrices are calculated in the subroutine QUASI.
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COMPUTER PROGRAM

Subroutine Matrix 2 calculates the following matrices

[AX] [BX] [CX] [FX]

[DF] [DYB] [DYC] [DYE]

The complete system equations are:

oq

[AX] {x) + [B] {_) + [CX] {x) + [DYE] {v} = {FX} u

{_) = [DYC] {v) + + [DYB1] {x} + [DYB2] {k) + [DF] {u}

THE VARIABLES ARE

{x} = {a 1, b l, Yl' Y2' ql' q2' q3' q4 }T

<v) = <vc, v s}

NOTE:

AX, BX, CX, FX are renamed M, C, K, F

when Matrix 2 is called.

Complete system equations of motion

0 1 0

_M-IK _M-Ic _M-IDYE

DYBI DYB2 DYC

+

0

M-IF

DF
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= , SAMPLE DATA FILE

(BHEFA. DAT)

UH-GOA BLACEHAWK PARAMETERS

V

38512. 0, 4659. 0, 460. 9,

--7959. 0, -'7959. 0, 0. 0,

0. 0_ 0. 0, 0. 0, 0.0

6. 87, 0. 0, 0. 0, 1.0, 0. 0,

0.0, -I. 0, 0. 0, 0. 0, i. 0,

4600, 0. 0, 0. 0, 27. 0

7. 98, 86.. 70, 1512. E,

26. 83, I. 25, I. 73, 0. 0821,

i. 95E-03, 0. 015

0.0, 0.0

:1.0, 0. 0, 0. 0, 0.0

0.0, 1.0, 0.0 ,0.0

15870. 0, _. 46, 2. 00

460. 9

0.0

6. 87, I. O, 0.0

D O, 0._, 0. 0

5.73

BLACKHAWK data for flight test. Includes two additic.na] parar0eters

following the thrust: HH, the height of the equivalent cylinder of

air; ar,d WRF, the wake rigidity factor, equal to 1.0 for a rigid wake_

and 2.0 fc, r nor,-rigid wake.

v
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..... [ OPEN-LL)Dg' EIGENVALUES ]===

E I GEI'4VA[.UE REAL I MAG

1 . 0OOE+00 . @eoEE+00

2 .000E+00 .000E+00

-9.09_E 00 5.203E+01

4 -9.095E+00 -5.203E+01

5 -i.983E+00 3. 911E+0J

6 -1.983E+00 -'_._911E+01

7 -2. 576E+01 2. 464E+00

8 -2.576E+01 -2. 464E+00

9 -I. 353E+00 1.828E+01

10 -1.353E+00 -I. 828E+01

i I -2. 997E+00 4. 940E+00

12 -2.997E+00 -4.940E+00

13 -4. 263E+00 .000E+00

14 -1.511E+00 .000E+00

15 5. 173E-02 3. 275E-01

16 5. 173E-02 -3. 275E-01

i 7 6. 505E-03 3. 539E-01

18 6. _c:--_o_ -_. 539E-01

SAMPLE PROGRAM OUTPUT

FULL SYSTEM WITH DYNAMIC INFLOW

INPUT DATA FILE (BHEFA.DAT)

Eigenvalue Identification

(1,2) Associated with lack

(3,4) Advancing flap mode

(5,6) Advancing lag mode

(7,8) Inflow mode

(9,10) Regressing lag mode

(11,12) Coupled roll/body flap

(13,14) Coupled pitch/body

(15,16,17,18) Coupled roll,

of dependence on x F, YF

mode

flap modes

pitch, body

42
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Notes on the usage and compilation of H5NEW:

HSNEW is an updated version of a program for calculation of helicopter rotor/body linearizecl dynamic
equations of motion. The helicopter is assumed to be in hover; formulation is sufficiently general to

accommodate a wide variety of helicopter and rotortypes, as explained in the detailed documentation.

These paragraphs are meant to aid installation of the program on a machine other than that on which it

was developed, namely, an IBM-PC with an 8087 numeric coprocessor.

Files on this distribution diskette include source code for the generation of matrices in the equations of
motion, as well as executable code that should run, unmodified, on an |BM-PC class machine with an

8087 math chip installed. Scenarios are presented below if this is not your current installation.

If you will be running the program on another machine, the source must be recompiled and relinked into
an executable module. One of the notable problems that will be immediately encountered is that the

source for the eigenvalue/eigenvector routines is NOT on this diskette, due to space constraints. These

routines, called from the subroutine "EIGSYS", are part of the standard EISPACK matrix subroutine

package for real general matrices, and should (hopefully) be available at your installation. Note that the

eigenanalysis portion of the main program HSNEW is really a post-processing function, and not intrinsic
to the generation of the system matrices in the first place. Thus, one could just comment out the lines in

the main program to eliminate the eigenanalysis, and then recompile and relink the code.

The file "LNK" contains a "batch"-like file for the linking process, following the successful recompilation

of the program and subroutines on the disk. Linking of the object code (*.OBJ) can be done via:

link @LNK

provided that the EISPACK routines have been compiled and grouped into their own library.

Compilation of the programs on another computer (under a UNIX or VMS environment) will of course

depend upon the appropriate incantations necessary for the resident FORTRAN compiler, and are best
formulated by a quick study of the contents of the listings.

The main routine is called "H5NEW", which reads in both controlling information and names of input

data files. This main executive then passes control to "MATRIX2", which is given the task of computing

all of the system matrices for the problem. Then, according to the wishes of the user, one or more support

routines are used to combine the matrices produced from "MATRIX2". These include: FRST, a

subroutine that reduces the mass-spring-damping formulation into 2-N sets of first-order ordinary

differential equations; MINV, a matrix inversion routine, required in several matrix combination

operations; QUASI, a subroutine that generates a "quasi-static" model based upon the full rotor+body

dynamics equations; and EIGSYS, a subroutine that in turn calls EISPACK routines to compute system

eigenvalues and eigenvectors for either the full or quasi-static systems.

Also on the disk is a file called OPTSYS.EXE, which is an executable program (again, requiring an 8087

chip) for computing system poles for matrix-vector representations of linear systems. This routine allows

one to investigate effects of certain feedback on the pole locations of the closed-loop system.

BHEFA.DAT is an example data file for input to the program, with some additional commenting after the

last line of numeric input.

Should installation questions arise, you may contact me for further help:

Bob McKillip
Mechanical and Aerospace Engineering Dept.

Princeton University
P.O. Box CN5263

Princeton, NJ 08544-5263

(609) 258-5147


